cos sin tan分别是?

正弦,余弦,正切

tan 就是正切的意思,直角三角函数中,锐角对应的边跟另一条直角边的比

cos 就是余弦的意思,锐角相邻的那条直角边与斜边的比

sin 就是正弦的意思,锐角对应的边与斜边的边

料:在直角三角形中,当平面上的三点A、B、C的连线,AB、AC、BC,构成一个直角三角形,其中∠ACB为直角对∠BAC而言,对边(opposite)a=BC、斜边(hypotenuse)c=AB、邻边(adjacent)b=AC,

a=tanα是什么?

tanA是数学中的三角函数名,是正切函数。tanA=∠A的对边除以∠A的邻边。

正切函数 tanθ=sinA/cosA正切(tan):角α的对边 比 邻边 tanα的定义域(-π/2+kπ,π/2+kπ),k属于整数,值域无穷。

正切函数的特点:

在正切函数的图像中,在角 kπ 附近变化缓慢,而在接近角 (k + 1/2)π 的时候变化迅速。正切函数的图像在 θ = (k + 1/2)π 有垂直渐近线。

这是因为在 θ 从左侧接进 (k + 1/2)π 的时候函数接近正无穷,而从右侧接近 (k + 1/2)π 的时候函数接近负无穷。

扩展资料:

tanA函数的作用:一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。

三角函数中的其他定理:

正切定理,对于边长为a,b和c而相应角为A,B和C的三角形,有:

广义射影定理,三角形中任意一边等于其他两边以及对应角余弦的交叉乘积的和,即a=c cosB + b cosC

三角恒等式,对于任意非直角三角形中,如三角形ABC,总有tanA+tanB+tanC=tanAtanBtanC

参考资料:

三角函数atan计算公式?

两角和公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-cosAsinB

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

cot(A+B)=(cotAcotB-1)/(cotB+cotA)

cot(A-B)=(cotAcotB+1)/(cotB-cotA)

倍角公式

tan2A=2tanA/(1-tan^2A)

Sin2A=2SinACosA

Cos2A=Cos^2A--Sin^2A=2Cos^2A—1=1—2sin^2A

三倍角公式

sin3A=3sinA-4(sinA)^3

cos3A=4(cosA)^3-3cosA

tan3a=tanatan(π/3+a)tan(π/3-a)

半角公式

sin(A/2)=√{(1--cosA)/2}

cos(A/2)=√{(1+cosA)/2}

tan(A/2)=√{(1--cosA)/(1+cosA)}

cot(A/2)=√{(1+cosA)/(1-cosA)}

tan(A/2)=(1--cosA)/sinA=sinA/(1+cosA)

和差化积

sin(a)+sin(b)=2sin[(a+b)/2]cos[(a-b)/2]

sin(a)-sin(b)=2cos[(a+b)/2]sin[(a-b)/2]

cos(a)+cos(b)=2cos[(a+b)/2]cos[(a-b)/2]

cos(a)-cos(b)=-2sin[(a+b)/2]sin[(a-b)/2]

tanA+tanB=sin(A+B)/cosAcosB

积化和差

sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]

cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]

sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]

cos(a)sin(b)=1/2*[sin(a+b)-sin(a-b)]

诱导公式

sin(-a)=-sin(a)

cos(-a)=cos(a)

sin(π/2-a)=cos(a)

cos(π/2-a)=sin(a)

sin(π/2+a)=cos(a)

cos(π/2+a)=-sin(a)

sin(π-a)=sin(a)

cos(π-a)=-cos(a)

sin(π+a)=-sin(a)

cos(π+a)=-cos(a)

tgA=tanA=sinA/cosA

万能公式

sin(a)=[2tan(a/2)]/{1+[tan(a/2)]^2}

cos(a)={1-[tan(a/2)]^2}/{1+[tan(a/2)]^2}

tan(a)=[2tan(a/2)]/{1-[tan(a/2)]^2}

其它公式

asin(a)+bcos(a)=[√(a^2+b^2)]*sin(a+c)[其中,tan(c)=b/a]

asin(a)-bcos(a)=[√(a^2+b^2)]*cos(a-c)[其中,tan(c)=a/b]

1+sin(a)=[sin(a/2)+cos(a/2)]^2

1-sin(a)=[sin(a/2)-cos(a/2)]^2

公式一:设α为任意角,终边相同的角的同一三角函数的值相等

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:任意角α与-α的三角函数值之间的关系

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:π/2±α及3π/2±α与α的三角函数值之间的关系

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

三角函数sin cos tan分别代表是什么?

这是三角函数的符号,cos表示余弦函数,sin表示正弦函数,tan表示正切函数。在直角三角形中,对边/斜边=sinx,邻边/斜边=cosx,对边/邻边=tanx,邻边/对边=cotx。

比如:

直角三角形中, (∠α是锐角)

cos、sin、tan分别代表三角函数里的余弦、正弦、正切。正弦,数学术语,是指对边与斜边的比。在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA。古代说法,正弦是股与弦的比例。

  

  余弦,三角函数的一种。在Rt△ABC(直角三角形)中,∠C=90°,∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为cosa=AC/AB。Tan是正切的意思,角θ在任意直角三角形中,与θ相对应的对边与邻边的比值叫做角θ的正切值