一、什么是,幂函数?
幂函数定义:形如y=x^a(a为实数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数。例如函数y=x y=x、y=x、y=x(注:y=x=1/x y=x时x≠0)等都是幂函数。
幂函数图像必须出现在第一象限而不是第四象限。它是否出现在第二和第三象限取决于函数的奇偶性。幂函数图像最多只能出现在两个象限中。如果幂函数图像与坐标轴相交,则交点必须是原点。
幂函数是基本初等函数之一。
一般地,y=x^α(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。例如函数y=x^0 、y=x^1、y=x^2、y=x^-1(注:y=x^-1=1/x、y=x^0时x≠0)等都是幂函数。
扩展:
定义域和值域及其奇偶性
其中,a可为任何常数,但中学阶段仅研究a为有理数的情形(a为无理数
a为有理数的情形时,定义域为(0,+∞) ),这时可表示为
,其中m,n,k∈N*,且m,n互质。特别,当n=1时为整数指数幂。
(1)当m,n都为奇数,k为偶数时,定义域、值域均为R,为奇函数;
(2)当m,n都为奇数,k为奇数时,定义域、值域均为{x∈R|x≠0},也就是(-∞,0)∪(0,+∞),为奇函数;
(3)当m为奇数,n为偶数,k为偶数时,定义域、值域均为[0,+∞),为非奇非偶函数;
(4)当m为奇数,n为偶数,k为奇数时,定义域、值域均为(0,+∞),为非奇非偶函数;
(5)当m为偶数,n为奇数,k为偶数时,定义域为R、值域为[0,+∞),为偶函数;
(6)当m为偶数,n为奇数,k为奇数时,定义域为{x∈R|x≠0},也就是(-∞,0)∪(0,+∞),值域为(0,+∞),为偶函数。
二、如何区别指数函数和幂函数?
一般地,形如y=a^x(a>0且a≠1)(x∈R)的函数叫做指数函数。也就是说以指数为自变量,底数为大于0且不等于1的常量的函数称为指数函数,它是初等函数中的一种。一般地,形如y=x^a(a为有理数)的函数,即以底数为自变量,指数为常数的函数称为幂函数。也是初等函数中的一种。
三、幂函数的指数?
y=a^x称为指数函数,特征是:底数是常数,指数是自变量;y=x^a称为幂函数,特征是:指数是常数,底数是自变量;y=[f(x)]^g(x)称为幂指型函数,特征是:底数和指数里都有自变量。特别的,y=x^x称为幂指数函数。
四、幂和指数的区别?
指数是幂运算aⁿ(a≠0)中的一个参数,a为底数,n为指数,指数位于底数的右上角
幂和指数的区别:1、幂(power)是指乘方运算的结果。n^m指该式意义为m个n相乘。把n^m看作乘方的结果,叫做n的m次幂,也叫n的m次方。2、指数是幂运算aⁿ(a≠0)中的一个参数,a为底数,n为指数,指数位于底数的右上角,幂运算表示指数个底数相乘。当n是一个正整数,aⁿ表示n个a连乘。当n=0时,aⁿ=1
幂函数和指数函数区别
自变量x的位置不同。指数函数,自变量x在指数的位置上,y=a^x(a>0,a 不等于 1)。幂函数,自变量 x 在底数的位置上,y=x^a(a 不等于 1). a 不等于 1,但可正可负,取不同的值,图像及性质是不一样的。
五、指数和幂的区别,数学的?
指数和幂的区别其实很简单
幂是指一个结果或者一个式子比如楼上都拒了例子
2的3次方这个2的3次方=8就是幂
而3就是指数也就是说在一个幂中几次方的那个几就是指数