一、1和0是怎么把模拟信号转化成数字信号的?

答:有,不仅有,而且非常多,所有的手机、wifi设备、蓝牙设备或者说绝大多数的现代的数字无线通讯设备都在用这种方式进行数字信号的传输

首先需要明确的是,信息传输都是建立在模拟信号的传递上的,无论传输内容的是数字量还是模拟量。

举个简单的例子,ttl信号是一种0-5v之间变化的电压信号,电压信号是一个模拟信号。但是通过规定大于2.4v为1、小于0.4v为0,能够让这么一个模拟信号去表示数字信号。

然后通过抽象,将物理层面上电压的变化抽象为逻辑层面的0-1变化,让人不用去关心物理层面的细枝末节,而只关系逻辑层面的01。但不管怎么说,ttl信号是在物理层面上是模拟信号,这都是毫无疑问的。要说明一点的事,对于ttl或cmos信号这种所谓的“数字信号”,由于仅仅存在两种状态,因此完全没有必要去使用dac发送和adc接收。注意这只是从实现难度、成本上考虑得到,没有必要的结论,而不是不可以。但是通信一直都是在追求更高的速度。

为了提速,人们想方设法在有限的空间(泛指传递数字信号的载体)内承载更多的信息,很多技术发展了起来,例如QAM256,是一种iq调制方法,iq两路每一路电压都有信号16个电平,这样的信号一次传输可以一次传输8个字节的数据(256种组合)。

在速度提高的过程中人们发现由于信号在空间内越来越密集,这种调制后的“数字信号”越来越接近真正的模拟信号。

因此在这时adc和dac又被重新拿了出来作为产生信号的手段。

目前来讲,3G、4G、WIFI都是将数字信号进行编码、调制,然后采用DAC进行基带信号的输出,经过模拟手段进行上变频、功率放大最终进行发射。

接收过程是接收后下变频,然后使用ADC采集基带信号,然后通过软件或硬件上的解调、解码算法处理得到有效的数字信息。

二、如何理解调制方式的QAM?

在二进制ASK系统中,其频带利用率是1bit/s·Hz,若利用正交载波调制技术传输ASK信号,可使频带利用率提高一倍。如果再把多进制与其它技术结合起来,还可进一步提高频带利用率。能够完成这种任务的技术称为正交幅度调制(QAM)。QAM一种幅度、相位联合调制的技术,同时使用载波的幅度和相位来传递信息比特,将一个比特映射为具有实部和虚部的矢量,然后调制到时域上正交的两个载波上,然后进行传输。每次在载波上利用幅度和相位表示的比特位越多,则其传输的效率越高。通常有 4QAM,16QAM,64QAM,256QAM,……等以16QAM为例,其规定了16种幅度和相位的状态,一次就可以传输1个4位的二进制数。当然可以规定更多的传输状态(采样点),这种状态越多,则传输效率越高。目前4096QAM的调制方式都已经在研制中,而2048QAM的调制方式已经在微波产品中得到应用。QAM是无线通信中应用最为广泛的调制方式。

三、麒麟980ai相当于骁龙多少?

性能和845差不多,与855还有点差异,主要是CPU\GPU方面,不过在AI性能上麒麟980则更好!

四、5g采用哪些编码方式?

5g采用了八种编码方式

一、频谱扩展

5G网络和4G大不同。首先从频谱来看,1G到4G无线通信采用的 300MHz~3GHz 频谱具有穿透性、覆盖范围广等优点,但存在一个非常致命的缺点:频带宽度过于狭窄,位于频段内的无线设备数量众多,频谱分配即将枯竭。

全球5G先发频段则是C波段(频谱范围为3.3GHz-4.2GHz、4.4GHz-5.0GHz)和毫米波频段26GHz/28GHz/39GHz。此外,5G采用了宽频方式定义频段,形成了少数几个全球统一频段,大大降低了手机支持全球漫游的复杂度。5G的最大带宽由20MHz增加到在C波段上最大支持100MHz,在毫米波上最大支持400MHz。

二、新波形

5G采用基于OFDM化的波形和多址接入技术。OFDM技术被当今的4G LTE和Wi-Fi系统广泛采用。因其可扩展至大带宽应用,可具有高频谱效率和较低的数据复杂性,因此能够很好地满足5G要求。OFDM 技术家族可实现多种增强功能,例如通过加窗或滤波增强频率本地化、在不同用户与服务间提高多路传输效率,以及创建单载波OFDM波形,实现高能效上行链路传输。

通过OFDM子载波之间的15kHz间隔(固定的OFDM参数配置),LTE最高可支持20 MHz的载波带宽。为了支持更丰富的频谱类型/频带(如毫米波、非授权频段)和部署方式。5G NR将引入可扩展的OFDM间隔参数配置。这样,5G NR就在统一的框架下提高多路传输效率。另外,5G NR也能跨参数实现载波聚合,比如聚合毫米波和6GHz以下频段的载波。

5G新空口在上行与下行方向上均采取具有可扩展特性(在子载波间隔及循环前缀方面)的循环前缀正交频分复用(CP-OFDM)技术,这样,上行与下行就有着相同的波形,从而就可简化5G新空口的整体设计,尤其是无线回程以及设备间直接通信(D2D)的设计。缩减 OFDM 信号的 CP 前缀,压缩 OFDM 长度,可降低传输延迟。此外,Filter-OFDM技术可降低频谱边缘保护带的开销,相比4G,在同样的标称带宽下,传输带宽有了明显的提升。

三、高阶调制

现有4G LTE具有QPSK、16QAM、64QAM、256QAM可采取这四种调制方式,5G新空口也将支持。目前,5G新空口标准中新增1024QAM。

在手机侧,目前4G采用的调制方式是64QAM。而5G可以采用256QAM,这样一个码元就可以传输8比特数据。

四、Massive MIMO

多天线技术经历了从无源到有源,从2D到3D,从高阶MIMO到大规模阵列的发展,有望实现频谱效率提升数十倍甚至更高。

由于引入了有源天线阵列,5G基站侧可支持的协作天线数量将达到128根。此外,原来的2D天线阵列拓展成为3D天线阵列,形成新颖的3D-MIMO技术,支持多用户波束智能成形,减少用户间干扰,结合高频段毫米波技术,将进一步改善无线信号覆盖性能。

多天线的使用带来了空间复用增益,可以大幅度提升容量。但对于特定终端(如手机),能支持的复用层数受限于接收天线的数目。

现在大家所使用的手机标配的接收天线数目为两个,因此能支持最大复用层数为两层。未来使用4收天线的终端将成为主流。5G NR将标配的接收天线数目提升了一倍。相比2收、4收终端可以大幅提升下行速率。

五、波束成形

Massive MIMO由于每个天线阵列集成了更多的天线,因此其主要挑战是减少干扰。如果能有效地控制这些天线,让它发出的每个电磁波的空间互相抵消或者增强,就可以形成很窄的波束,而不是全向发射。这样就能将有限的能量都集中在特定方向上进行传输,不仅可使传输距离更远,而且还能避免信号的干扰,这种将无线信号(电磁波)按特定方向传播的技术就叫做波束成形(beamforming)。

这一技术的优势不仅如此,它可以提升频谱利用率,通过这一技术便可同时从多个天线发送更多信息。因此,波束成形可以解决毫米波信号被障碍物阻挡以及远距离衰减的问题。

六、全双工

最近几年,同时同频全双工技术吸引了业界的注意力。5G网络采用该技术,在相同的频谱上,通信的收发双方同时发射和接收信号,与传统的TDD和FDD双工方式相比,从理论上可使空口频谱效率提高1倍。全双工技术能够突破FDD和TDD方式的频谱资源使用限制,使得频谱资源的使用更加灵活。

七、终端直通

传统的蜂窝通信系统的组网方式是以基站为中心实现小区覆盖,而基站及中继站无法移动,其网络结构在灵活度上有一定的限制。随着无线多媒体业务不断增多,传统的以基站为中心的业务提供方式已无法满足海量用户在不同环境下的业务需求。

终端直通(D2D)技术无需借助基站的帮助就能够实现通信终端之间的直接通信,拓展网络连接和接入方式。由于短距离直接通信,信道质量高,D2D能够实现较高的数据速率、较低的时延和较低的功耗;通过广泛分布的终端,能够改善覆盖,实现频谱资源的高效利用;支持更灵活的网络架构和连接方法,提升链路灵活性和网络可靠性。

目前,D2D采用广播、组播和单播技术方案,未来将发展其增强技术,包括基于D2D的中继技术、多天线技术和联合编码技术等。

八、高级信道编码设计

目前LTE网络的编码还不足以应对未来的数据传输需求,因此迫切需要一种更高效的信道编码设计,以提高数据传输速率,并利用更大的编码信息块契合移动宽带流量配置,同时,还要继续提高现有信道编码技术(如LTE Turbo)的性能极限。

与前代通信技术数据信道所用turbo码、控制信道用TBCC等编码方式相比,5G NR采用了全新的信道编码方式,即数据信道用LDPC编码,控制信道和广播信道用Polar编码。这一改进可以提高NR信道编码效率,能以低复杂度和低时延,扩展达到更高的传输速率。

五、模拟输出与数字输出有什么不同?

答:有,不仅有,而且非常多,所有的手机、wifi设备、蓝牙设备或者说绝大多数的现代的数字无线通讯设备都在用这种方式进行数字信号的传输。

首先需要明确的是,信息传输都是建立在模拟信号的传递上的,无论传输内容的是数字量还是模拟量。

举个简单的例子,ttl信号是一种0-5v之间变化的电压信号,电压信号是一个模拟信号。但是通过规定大于2.4v为1、小于0.4v为0,能够让这么一个模拟信号去表示数字信号。

然后通过抽象,将物理层面上电压的变化抽象为逻辑层面的0-1变化,让人不用去关心物理层面的细枝末节,而只关系逻辑层面的01。但不管怎么说,ttl信号是在物理层面上是模拟信号,这都是毫无疑问的。要说明一点的事,对于ttl或cmos信号这种所谓的“数字信号”,由于仅仅存在两种状态,因此完全没有必要去使用dac发送和adc接收。注意这只是从实现难度、成本上考虑得到,没有必要的结论,而不是不可以。但是通信一直都是在追求更高的速度。

为了提速,人们想方设法在有限的空间(泛指传递数字信号的载体)内承载更多的信息,很多技术发展了起来,例如QAM256,是一种iq调制方法,iq两路每一路电压都有信号16个电平,这样的信号一次传输可以一次传输8个字节的数据(256种组合)。

在速度提高的过程中人们发现由于信号在空间内越来越密集,这种调制后的“数字信号”越来越接近真正的模拟信号。

因此在这时adc和dac又被重新拿了出来作为产生信号的手段。目前来讲,3G、4G、WIFI都是将数字信号进行编码、调制,然后采用DAC进行基带信号的输出,经过模拟手段进行上变频、功率放大最终进行发射。

接收过程是接收后下变频,然后使用ADC采集基带信号,然后通过软件或硬件上的解调、解码算法处理得到有效的数字信息。

六、数字电视信号与模拟信号如何调制在一起传输?

是65到860M,0.1是基带信号,数字电视信号QAM调制前就是基带信号,调制后是64QAM信号。通常数字信号是指基带信号(不要把这个说法和数字电视信号搞混了),但是基带信号只能线性传输,带宽很窄,传输距离也很短,因此需要调制成模拟电信号,就可以利用电信号中的不同频率。

打个比方,1个模拟频点带宽为8MHz,采用64QAM调制时,每Hz可以携带6bit信息,那么一个频点就可以携带48Mbit信息。一套数字电视节目6Mbit,扣除各种管理信息和校验码等,1个模拟频点至少可以装6套标清节目。具体区别不是几句话能说清的,需要了解数字通信技术才行。

数字有线一般采用64QAM调制,也有用256QAM的,地面数字电视不晓得调制方式,卫星是QPSK。