三角形的中线定理?

三角形的中线是接三角形顶点和它的对边中点的线段每个三角形都有三条中线,它们都在三角形的内部。在三角形中,三条中线的交点是三角形的重心。三角形的三条中线交于一点,这点位于各中线的三分之二处。

由平方关系,联想到勾股定理,为此构造直角三角形。

过点A作AE⊥BC,垂足为E,根据△ABC的不同形状,垂足E可能在线段BD上、线段CD上、BC的延长线或CB的延长线上,当然E还可能与D点重合,此时△ABC是等腰三角形,结论显然成立。下面我们只证明垂足E在线段CD上的情况,其他情况类似证明。

为什么三角形的三条中线会交于一点?

何三角形都有三条中线,而且这三条中线都在三角形的内部,并交于一点。由定义可知,三角形的中线是一条线段。由于三角形有三条边,所以一个三角形有三条中线。且三条中线交于一点。这点称为三角形的重心。每条三角形中线分得的两个三角形面积相等。

证明即可得出结论。

设在△ABC中,BD、CE分别是AC和AB边的中线,BD和CE交于O,连接AO并延长交BC于F,求证AF是BC边的中线。

证明:

作BG//EC,交AF的延长线于G,连接CG。

∵BG//EC,

∴AE/BE=AO/OG,

∵CE是AB边的中线,即AE=BE,

∴AO=OG,

∵BD是AC边的中线,

∴OD是△AGC的中位线,

∴OD//GC,

∴四边形OBGC是平行四边形(两组对边分别平行的四边形是平行四边形),

∴BF=CF(平行四边形对角线互相平分),

∴AF是BC边的中线。

三角形中中线的取值范围公式?

中线定理(pappus定理)是指三角形ABC内BM=MC,则AB^2+AC^2=2*(AM^2+BM^2)又称阿波罗尼奥斯定理,是欧氏几何的定理,表述三角形两边和中线长度关系。证明:AC^2=AH^2+HC^2AB^2=AH^2+BH^2=AH^2+(HC+2MH)^2=AH^2+HC^2+4MH*HC+4MH^

2左边=AB^2+AC^2=2*AH^2+2CH^2+4MH*CH+4MH^

2右边=2*(AM^2+BM^2)=2*(AH^2+MH^2+(CH+MH)^2)=2*(AH^2+MH^2+CH^2+2CH*MH+MH^2)得证