一、什么是有理数和无理数?

有理数:分为正有理数、负有理数和0有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,含义是无限循环小数的都叫有理数。

无理数:含义是无限不循环小数。无理数应满足三个条件:是小数、是无限小数、不循环。圆周率就是典型的无理数。

二、无理数和有理数。为什么要区别?

区别如下:

1.性质不同有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。

2.范围不同有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。无理数是指实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数。

3.结构不同有理数为整数(正整数、0、负整数)和分数的统称。无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。

三、什么叫做有理数和无理数?

有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合,即有理数的小数部分为有限或无限循环小数。

有理数与之对应的是无理数(不是有理数的实数遂称为无理数),其小数部分是无限不循环的数。有理数是“数与代数”领域中的重要内容之一,在现实生活中也有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。

四、有理数和无理数的区别?

有理数和无理数

证明:假设√2不是无理数,而是有理数。√2=p/q 由于2q^2是偶数,p

基本信息

中文名 有理数和无理数

目录

正文

有理数(rational number):能精确地表示为两个整数之比的数,如3,-98.11,5.72727272……,7/22都是有理数。

整数和通常所说的分数都是有理数。有理数还可以划分为正有理数、0和负有理数。

无理数指无限不循环小数,如:π。

无理数与有理数的区别:

1、把有理数和无理数都写成小数形式时,有理数能写成有限小数和无限循环小数,比如4=4.0, 4/5=0.8, 1/3=0.33333……而无理数只能写成无限不循环小数,比如√2=1.414213562…………根据这一点,人们把无理数定义为无限不循环小数。

2、所有的有理数都可以写成两个整数之比;而无理数不能。根据这一点,有人建议给无理数摘掉“无理”的帽子,把有理数改叫为“比数”,把无理数改叫为“非比数”。本来嘛,无理数并不是不讲道理,只是人们最初对它不太了解罢了。

利用有理数和无理数的主要区别,可以证明√2是无理数。

证明:假设√2不是无理数,而是有理数。

既然√2是有理数,它必然可以写成两个整数之比的形式:

√2=p/q

又由于p和q没有公因数可以约去,所以可以认为p/q 为既约分数,即最简分数形式。

把 √2=p/q 两边平方

得 2=(p^2)/(q^2)

即 2(q^2)=p^2

由于2q^2是偶数,p 必定为偶数,设p=2m

由 2(q^2)=4(m^2)

得 q^2=2m^2

同理q必然也为偶数,设q=2n

既然p和q都是偶数,他们必定有公因数2,这与前面假设p/q是既约分数矛盾。这个矛盾是有假设√2是有理数引起的。因此√2是无理数。