一、心形函数笛卡尔解析式?

直角坐标方程心形线的平面直角坐标系方程表达式分别为 x^2+y^2+a*x=a*sqrt(x^2+y^2) 和 x^2+y^2-a*x=a*sqrt(x^2+y^2)。

极坐标方程水平方向: ρ=a(1-cosθ) 或ρ=a(1+cosθ) (a>0)垂直方向: ρ=a(1-sinθ) 或ρ=a(1+sinθ) (a>0)极坐标系下绘制 r = Arccos(sinθ),我们也会得的一个漂亮的心形线。

二、求心形函数表达式~~~?

这就是它的直角坐标方程。它的任一组解(x, y)就是直角坐标系上的一点。由方程可看出它关于Y轴对称(即(x, -y)也为曲线上一点)。你当然也可将其写成显式的式子。只要将y^2看成未知数t, 则这是个关于t的二次方程,可以解得t=y^2=f(x).这样y=±√f(x)只不过这个式子比较复杂罢了。

三、笛卡尔的爱心函数公式?

r=a(1-sinΘ)

数学表白

用数学方式表白就不得提起笛卡尔的心型函数,笛卡尔在52岁时邂逅了当时瑞典的公主,当时他是那位公主的数学老师,不久那位公主就对笛卡尔产生了爱慕之情。然而,国王知道后,非常愤怒,将他流放回法国。在那里,笛卡尔给公主写的信都会被拦截。然而有一封笛卡尔只写了一个公式

r=a(1-sinΘ)

国王也看不懂,于是把这封信交给了公主。这就是我们知道的极坐标下的心型函数。

虽然故事的真实性有待考量,我们也不过多深究。

笛卡尔心形线的由来

1650年,斯德哥尔摩的街头,52岁的笛卡尔邂逅了18岁的瑞典公主克里斯汀。那时,落魄、一文不名的笛卡尔过着乞讨的生活,全部的财产只有身上穿的破破烂烂的衣服和随身所带的几本数学书籍。生性清高的笛卡尔从不开口请求路人施舍,他只是默默地低头在纸上写写画画,潜心于他的数学世界。

一个宁静的午后,笛卡尔照例坐在街头,沐浴在阳光中研究数学问题,突然,有人来到他身旁,拍了拍他的肩膀,“你在干什么呢?”扭过头,笛卡尔看到一张年轻秀丽的脸庞,一双清澈的眼睛如湛蓝的湖水,楚楚动人,长长的睫毛一眨一眨的,她就是瑞典的小公主,国王最宠爱的女儿克里斯汀。

笛卡尔的爱心函数(笛卡尔的爱心函数直角坐标系公式)

她蹲下身,拿过笛卡尔的数学书和草稿纸,和他交谈起来。言谈中,他发现这个小女孩思维敏捷,对数学有着浓厚的兴趣。

几天后,他意外地接到通知,国王聘请他做小公主的数学老师,满心疑惑的笛卡尔跟随前来通知的侍卫一起来到皇宫,在会客厅等候的时候,他听到了从远处传来银铃般的笑声。转过身,他看到了前几天在街头偶遇的女孩子,慌忙中,他赶紧低头行礼。

从此,他便当上了公主的数学老师。

公主的数学在笛卡尔的悉心指导下突飞猛进,他们之间也开始变得亲密起来。笛卡尔向她介绍了他研究的新领域——直角坐标系。通过它,代数和几何可以结合起来,也就是日后笛卡尔创立的解析几何的雏形。在笛卡尔的带领下,克里斯汀走进了奇妙的坐标世界,她对曲线着了迷。每天的形影不离也使他们彼此产生了爱慕之心。

在瑞典这个浪漫的国度里,一段纯粹、美好的爱情悄然萌发。

然而,没过多久,他们的恋情传到了国王的耳朵里,过往大怒,下令马上将笛卡尔处死。在克里斯汀的苦苦哀求下,国王将他放逐回国,公主被软禁在宫中。

当时,欧洲大陆正在流行黑死病。身体孱弱的笛卡尔回到法国后不久,遍染上重病。在生命进入倒计时的那段日子,他日夜思念公主,每天坚持给她写信,盼望着她的回音。然而,这些信都被国王拦截下来,公主一直没有收到他的任何消息。

在笛卡尔给克里斯汀寄出第十三封信后,他永远地离开了这个世界。此时,被软禁在宫中的小公主依然徘徊在皇宫的走廊里,思念着远方的情人。

这最后的一封信上没有写一句话,只有一个方程式:r=a(1-sinθ)。

国王看不懂,以为这个方程里隐藏着两个人不可告人的秘密,遍把全城的数学家召集到皇宫,但是没有人能解开这个函数式。他不忍看着心爱的女儿每天闷闷不乐,便把这封信给了她。拿到信的克里斯汀欣喜若狂,她立即明白了恋人的意图,找来纸和笔,着手把方程图形画了出来,一颗心型图案出现在眼前,克里斯汀不禁流下感动的泪水,这条曲线就是著名的“心形线”。

国王去世后,克里斯汀继承王位,登基后,她便立刻派人去法国寻找心上人的下落,收到的却是笛卡尔去世的消息,留下了一个永远的遗憾……

这封享誉世界的另类情书,至今还保存在欧洲笛卡尔纪念馆里,纪念着这段唯美的爱情。