一、收敛的函数必有界,有界的函数为什么不一定收敛?

收敛函数就是趋于无穷的(包括无穷小或者无穷大),该函数总是逼近于某一个值,这就叫函数的收敛性

从字面可以含义,就可理解为,函数的值总被某个值约束着,就是收敛,所以收敛必定有界,但是不一定上下界都有。

定义方式与数列收敛类似。柯西收敛准则:关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存在c>0,对任意x1,x2满足0

收敛的定义方式很好的体现了数学分析的精神实质。

扩展资料

一般的级数u1+u2+...+un+...

它的各项为任意级数。

如果级数Σu各项的绝对值所构成的正项级数Σ∣un∣收敛,

则称级数Σun绝对收敛。

如果级数Σun收敛,

而Σ∣un∣发散,

则称级数Σun条件收敛。

二、什么函数收敛但没有极限?

收敛函数一定有极限,有极限的函数不一定收敛。

函数一般不说收敛,只说当x有某种变化趋势时,f(x)是否有极限。数列或者级数,才喜欢说收敛。“收敛”和“有极限”是一个意思,完全等价。收敛一定有界,有界不一定收敛。

根据收敛定义就可以知道,对于数列an存在一个数A,无论给定一个多么小的数e,都能找到数字N,使得n>N时,所有的|an-A|。

有极限是局部有界,收敛是整体有界。函数单调有界可能不存在极限(∞),数列单调有界必有极限。

扩展资料

函数列{fn}具有极限函数的充要条件是:对任意ε>0,总存在正整数N,使得当n>N时,有|fn(x)-f(x)|<ε。通常这个N不仅与ε有关,也与自变量x有关,就算ε不变,当x发生改变时,N也会随之改变。

但是,如果某一函数列能找到这样一个正整数N,它只与ε有关,而对定义域(或其某个子集)上的任意一点x这个N都适用。

即对任何x∈D(D是函数列的定义域或其某个子集),只要n>N时,就有|fn(x)-f(x)|<ε。