一、r是实数吗?
R是全体实数.实数就是所有数,包含正数、负数,正数,小数等等.实数对应的是虚数,虚数是带有i的.也就是我们平常见到的都是实数.
二、函数解方程全过程?
简单的函数方程(一)
函数方程的概念:
1.函数方程的定义 含有未知函数的等式叫做函数方程。如f(x+1)=x、f(-x)=f(x)、f(-x)= -f(x)、f(x+2)=f(x)等。其中f(x)是未知函数
2.函数方程的解 能使函数方程成立的函数叫做函数方程的解。如f(x)=x-1、偶函数、奇函数、周期函数分别是上述各方程的解
3.解函数方程 求函数方程的解或证明函数方程无解的过程叫解函数方程
4.定理(柯西函数方程的解)
若f(x)是单调(或连续)函数且满足f(x+y)=f(x)+f(y) (x,y∈R)、则f(x)=xf(1)
证明:由题设不难得
f(x1+x2+…+xn)=f(x1)+f(x2)+…+f(xn)
取x1=x2=…=xn=x,得f(nx)=nf(x) (n∈N+)
令x=0,则f(0)=nf(0),解得f(0)=0 --------- (1)
x=1,则f(n)=nf(1)
x= ,则f(m)=nf( ) ,解得f( )= f(m)= f(1) --------- (2)
x=- ,且令y=-x>0,则f(x)+f(y)=f(x+y)=f(0)=0
∴f(x)=-f(y)=-yf(1)=xf(1) (m,n∈N+,且(m,n)=1) ---------(3)
由上述(1),(2),(3)知:对任意有理数x均有f(x)=xf(1)
另一方面,对于任意的无理数x,因f(x)连续,取以x为极限的有理数序列{xn},则有 :f(x)= f(xn)= xnf(1)=xf(1)
综上所述,对于任意实数x,有
f(x)=xf(1)
函数方程的解法:
1.代换法(或换元法)
把函数方程中的自变量适当地以别的自变量代换(代换时应注意使函数的定义域不会发生变化),得到一个新的函数方程,然后设法求得未知函数
例1 (1)已知f(2x-1)=x2+x,那麽f(x)=______________。
略解:设t=2x-1,则x= (t+1),那麽f(t)= (t+1)2+ (t+1)= t2+t+
故f(x)= x2+x+
(2) 已知f( +1)=x+2 ,那麽f(x)=____________。
略解:f( +1)=( +1)2-1,故f(x)=x2-1 (x≥1)
三、历史上共有几次数学危机?
三次
第一次数学危机,是数学史上的一次重要事件,发生于大约公元前400年左右的古希腊时期,自根号二的发现起,到公元前370年左右,以无理数的定义出现为结束标志。这次危机的出现冲击了一直以来在西方数学界占据主导地位的毕达哥拉斯学派,同时标志着西方世界关于无理数的研究的开始。
第二次数学危机,指发生在十七、十八世纪,围绕微积分诞生初期的基础定义展开的一场争论,这场危机最终完善了微积分的定义和与实数相关的理论系统,同时基本解决了第一次数学危机的关于无穷计算的连续性的问题,并且将微积分的应用推向了所有与数学相关的学科中。
数学史上的第三次危机,是由1897年的突然冲击而出现的,到现在,从整体来看,还没有解决到令人满意的程度。这次危机是由于在康托尔的一般集合理论的边缘发现悖论造成的。由于集合概念已经渗透到众多的数学分支,并且实际上集合论成了数学的基础,因此集合论中悖论的发现自然地引起了对数学的整个基本结构的有效性的怀疑。