一、三角函数对称轴公式怎么用?
三角函数对称轴公式:x=kπ+π/2。
y=Asin(wx+h) 对称轴 x = π/2 +kπ
y=Acos(wx+h) 对称轴 x=kπ
y=Atan(wx+h) 对称轴 x=kπ/2
以上k属于Z
三角函数中,只有sinx(正弦函数)和cosx(余弦函数)有对称轴,且两者不同:snx的对称轴:x=kπ+π/2,k∈Z;例如y=Asin(ωx+φ),只要令ωx+φ=kπ+π/2,解出x值.此x值就是正弦函数的对称轴(方程).cosx的对称轴为:x=kπ...
二、fx的对称中心和对称轴方程怎么求?
f(x)满足f(a+x)=f(a-x),则x=a为对称轴。2.f(x)满足f(a+x)=f(b-x),则x=(a+b)/2为对称轴。
函数的对称中心求法
设函数的对称中心为(a,b
那么如果点(x,y)在函数的图象上,则点(2a-x,2b-y)一定也在函数的图象上,所以将点(2a-x,2b-y)代入到函数的解析式中,化简为y=f(x)的形式
此时表达式中含有a,b,将这个式子与原函数表达式进行比较,因为这两个函数表达式,表示的是一个函数,所以有进行比较系数,就可以得出a,b的值,自然也就求出了对称中心。
如果一个函数图象围绕某一点旋转180°后,得到另一个函数的图象,那么我们说这两个函数图象关于这点成中心对称,把这个点叫做这两个函数的对称中心
把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点